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Smart Grid



Source: European Technology Platform Vision 
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Renewable generation to 
reduce carbon footprint
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Pervasive sensing, 
communication, control
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Storage to decouple 
supply and demand



Global investment in energy storage technologies to 
reach $122 Billion by 2021

Source: Pike Research

Storage: A Hot Area



Nature Climate Change: 2014

Tesla/Panasonic and GM/LG Chem battery costs were already (in 2016) down to 
the lowest projections for 2020! 7

Battery Costs: Current and Projections



Storage decouples supply and 
demand. Allows
Reliability 

for large scale 
renewable integration

Flexibility 
for energy management
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Why Storage?



Applications
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Battery Models
Electrochemical Models:
o Describes internal states of the battery by simulating chemical 

processes
o Useful for understanding and designing batteries

Equivalent Circuit Models:
o Resistance-capacitance components to model voltage non-linearities
o Partial-differential equations
o Typically useful for “small” simulations of energy systems

“Simplified Mathematical” Models:
o Black-box approach, model inputs and outputs
o Low-order polynomial functions
o Useful for large-scale simulation, optimization of energy systems
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Tractable Models For Optimization
Accurate

o Required degree of accuracy depends on the application
Tractable and low computational complexity

o Explicitly described by polynomials. Linear is easiest to work with.
Calibrated using spec

o Battery specifications sheet is readily available, avoid experiment-based 
parameter derivation which is cumbersome and does not scale

Uses power as input
o Power is conserved, avoid having to explicitly model voltage/current 

transformations
Integrates BMS (battery management system) functionality

o Model the cells as well as the software that protects them from misuse.
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Our approach
Start with a model that meets 4/5 requirements
o Accurate, spec-calibrated, power-based, integrated BMS, but is not 

explicit and based on polynomials
o Power-based Integrated (PI) model (F. Kazhamiaka, S. Keshav, C. 

Rosenberg, and K-H. Pettinger, “Simple Spec-Based Modelling of Lithium-Ion 
Batteries”, accepted to IEEE Transactions on Energy Conversion, April 2018.)

Explore different ways to approximate the complex parts of the PI 
model
o Approximate using polynomials of degree 0 (constants) through 4 

(quartics)
o Get a sense of what is lost with each approximation by comparing 

with the PI model
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Our Contributions
o Derive explicit models from the PI model
o Explore the effects of model accuracy with respect to the battery 

application
o Calibrate and validate the benchmark used by almost everyone

Note: All of this work is validated with an extensive 
measurement campaign
- Two Lithium-ion technologies
- Two cells per technology
- Charge/discharge test profiles exploring full capabilities 

of each cell
- Test profile resembling realistic usage
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Disclaimer
We do not model:
o State of health (degradation)
o Battery lifetime
o Temperature effects
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A Storage Model Based on First Principle
The storage has some capacity B in Wh. At time t, it is charged with 
power P(t)>0 or discharged with power P(t)<0. Its content is b(t)

The ideal behavior is:
                                 0 ≤ b(t+δ) = b(t) + P(t) δ ≤ B 
                                  where δ is the time-slot duration

However, it is important to consider imperfections, such as:

o charging/discharging speed limits
o energy conversion/inversion efficiency
o capacity limits 15

P(t)>0 P(t)<0
b(t)



16

Main differences: 
• voltage and current are 

internal variables, 
• the inefficiencies and the 

capacity limits are no more 
constant

• the (dis)charging limits are 
on current

• Introduction of the 
empirical function z=M(x,y)

(Dis)charging limits:
To avoid damaging 
storage, the BMS might 
prevent charging or 
discharging too quickly

Capacity limits

(In) efficiency: 
losses in energy 
conversion

Red and blue are for 
system parameters



Two Main Issues
o Calibrating these models, i.e., selecting the parameters out of the spec 

sheet.
o Validating them: is the benchmark good enough?

17Simple Complex

Accuracy level

PI

Bk

?



The Function M(.)
M surface represents viable 
combinations of cell voltage, 
energy content, and applied 
current
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For P(k)>0, we need to 
find the intersection 
between the surface 
defined by M(.) and the 
surface defined by:
b(k)=b(k-1)+P(k)-I2(k)Ric



1. Voltage Function Approximation
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Linear approximation Cubic approximation

In the PI model, the M function is an interpolation of points 
obtained from the spec. We can approximate it as a bivariate 
polynomial.



2. Energy Limit Functions

a1 and a2 are functions of the current (approximately linear)



3. Efficiency Functions
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We approximate the efficiency 
functions using constants or 
lines.

Constant approximations look 
bad, but that’s what people 
have been doing! And not as 
carefully as shown here!



Four models
V/E/η notation: Voltage, energy limit, and efficiency approximation
C: constant, L: linear, Q: quadratic (in terms of model variables)
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C/C/C is equivalent to the benchmark



Four Models: Complexity
Consider an optimization problem where b and P are variables.

Complexity of each model w.r.t. the variables
o C/C/C: Linear (hence its popularity)
o C/L/C: Linear
o C/L/L: Quadratic (efficiency is a function of the power)
o L/L/Q: Cubic (efficiency is a function of power and voltage)
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Evaluation

Metric: Energy

o Compute the mean absolute energy error (MAEE) when cycling 
the battery at constant current

o Ground truth: PI model.
o Battery chemistries: Lithium Titanate and Lithium Ferrous 

Phosphate.
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Evaluation



Evaluation: Lithium-Titanate
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 Models perform in order of the degree of their 
 complexity.



Evaluation on Applications
o How do we convince people to adopt our models?
o Accuracy metrics aren’t always convincing…
o Lets see how model results differ for two applications
❖ Solar farm: participating in electricity market in the form of 

constant hourly production
▪ Key variable: The amount of energy that the farm committed 

to providing, but did not deliver (unmet load)
❖ Regulation: ancillary service, focus on discharging

▪ Key variable: Maximum power that we can guarantee to 
provide.
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Solar Farm
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C/L/L and L/L/Q results 
are almost identical

Minimum # of cells to 
get 25% unmet load:
- PI: 50 
- C/C/C: 77
- C/L/C:  56
- C/L/L: 48
- L/L/Q: 49



Regulation
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This is the maximum 
power that we could 
guarantee to provide for 
the length of the contract, 
if the battery starts at 50% 
capacity.

All models perform 
quite well, except for 
C/C/C, hence the 
winner is C/L/C



What Did We Learn?
o Not trivial to calibrate even the benchmark
o C/L/C > C/C/C while remaining linear
o Understanding the approximations made in simpler models is 

crucial.
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What Is Next?
o Experiments are under-way to validate our models for different 

Lithium-ion chemistries, as well as other battery technologies
❖ Lead-Acid,
❖ Redox-Flow
❖ Sodium-Nickel-Chloride

o How to take into account temperature? state of health?



What 
next?
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