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Smart Grid
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Renewable generation to [
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Pervasive sensing, [
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Storage to decouple [
supply and demand PN
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Storage: A Hot Area

Global investment 1n energy storage technologies to
reach $122 Billion by 2021

Source: Pike Research
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Battery Costs: Current and Projections
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the lowest projections for 2020! EDUCATING THE ENGINEER OF THE FUTURE



EEEEEE—
Why Storage?

Storage decouples supply and
demand. Allows
Reliability
for large scale
renewable integration
Flexibility
for energy management
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Applications

Congestion,
upgrade deferral
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Battery Models

Electrochemical Models:
o Describes internal states of the battery by simulating chemical
processes
o Useful for understanding and designing batteries
Equivalent Circuit Models:
o Resistance-capacitance components to model voltage non-linearities
o Partial-differential equations
o Typically useful for “small” simulations of energy systems
“Simplified Mathematical”” Models:
o Black-box approach, model inputs and outputs
o Low-order polynomial functions
o Useful for large-scale simulation, optimization of energy systems
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Tractable Models For Optimization

Accurate
o Required degree of accuracy depends on the application
Tractable and low computational complexity
o Explicitly described by polynomials. Linear is easiest to work with.
Calibrated using spec
o Battery specifications sheet is readily available, avoid experiment-based
parameter derivation which 1s cumbersome and does not scale
Uses power as input
o Power is conserved, avoid having to explicitly model voltage/current
transformations
Integrates BMS (battery management system) functionality

o Model the cells as well as the software that protects them from misuse.
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Our approach

Start with a model that meets 4/5 requirements
o Accurate, spec-calibrated, power-based, integrated BMS, but is not
explicit and based on polynomials

o Power-based Integrated (PI) model (. Kazhamiaka, S. Keshav, C.
Rosenberg, and K-H. Pettinger, “Simple Spec-Based Modelling of Lithium-Ilon
Batteries”, accepted to IEEE Transactions on Energy Conversion, April 2018.)

Explore different ways to approximate the complex parts of the PI
model
o Approximate using polynomials of degree 0 (constants) through 4
(quartics)
o Get a sense of what 1s lost with each approximation by comparing
with the PI model
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Our Contributions

o Derive explicit models from the PI model

o Explore the effects of model accuracy with respect to the battery
application

o Calibrate and validate the benchmark used by almost everyone

Note: All of this work 1s validated with an extensive

measurement campaign

- Two Lithium-1on technologies

- Two cells per technology

- Charge/discharge test profiles exploring full capabilities
of each cell

- Test profile resembling realistic usage
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Disclaimer

We do not model:
o State of health (degradation)
o Battery lifetime
o Temperature effects
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A Storage Model Based on First Principle

The storage has some capacity B in Wh. At time ¢, 1t 1s charged with
power P(¢)>0 or discharged with power P(z)<0. Its content 1s b(?)

P(1)<0
P(t)>0) b1 (t) S

The ideal behavior 1s:
0 <b(tto) =b(t) + P(t) 0 <B
where 0 1s the time-slot duration

However, 1t 1s important to consider imperfections, such as:

o charging/discharging speed limits
o energy conversion/inversion efficiency
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e Red and blue are for
The benchmark: one input P(%), one state variable b(k) system parameters

b(k)=0bk—1)+ Ag(k) (In) efficiency:
v A . losses in energy
Ag(k) = { conversion
|

(Dis)charging limits:

To avoid damaging

Capacity limits | 1q < P(k) <_:
<
— storage, the BMS might

b(k) < as

prevent charging or

The PI model: one input P(k), one state variable b(£), discharging too quickly

(T H; A Main differences:
_ Tel y VAR), v)0 . IF(R) =2 o
Ag(k) = { na(1(R). V (k) P(K)S - P(k) < 0 Yoltage and. current are
N  I(b)R.. 7 internal variables,
ne(L(k), V (k) =1~— T( By I(k) = 0  the inefficiencies and the
I(k)R;, capacity limits are no more
na(L(k),V(k)) - () L I(k) <0 P Y
V(k) constant
Vi(k) = M(b(k), I(E)) * the (dis)charging limits are
k) = Fik) on current
o V(k) .
S }, j e Introduction of the
e = S8 = e empirical function z=M(x,
ai(I(k)) < b(k) < az(I(k)) P ()




Two Main Issues

o Calibrating these models, 1.e., selecting the parameters out of the spec

sheet.

o Validating them: is the benchmark good enough?

Accuracy level

Simple

Complex

Data
Nominal Capacity 30 Anh (measured at C!10 discharge rate, RT}
Nominal Voltage 23V
Voltage range 11V 21V
Impedance (1 kHz} <2mohm

Dimensions Length (L}
Wicth (W}
Thickness (T}

BTmm - £1mm
1785 mm +1mm (153 mm main body}
f2mm  +0,1-05mm

Weight foog
Volume 415 ml
Housing Foil packaging
Tabs Aluminium (+ Pole}, Ni-coated Copper {- Pole}
Length Bmm £imm
Distance omm  £0.25mm
Width S0mm  £05mm
Thickness 02mm +002mm

Expected Ifetime

Up'to 15,000 cycles [at 1C chargeddischarge full DoD and RT)

Expected calendar life

20years (atRT}

Charge

Charging method CCICY (constant Voltage with limited current}
Max. charge voltage 27V [+ 05V}

Recommended charge curent A(IC)

Max. charge curent 1204 (4C}

End of charge

U=27Vandl<CHO

Max. temperature range

-20°C 1o +55°C

Disch
g
Recommended discharge current SA[IC)
Max. discharge current 120A (4C}
End of discharge Voltage 17V
Max. temperature range -20°C 1o +55°C




DU
The Function M(.)

M surface represents viable

260 combinations of cell voltage,
24 energy content, and applied

255 current

5 22-

5.

g 18
1.6\ For P(k)>0, we need to

find the intersection
E\" o W between the surface
——— _— defined by M(.) and the
surface defined by:
b(k)=b(k-1)+P(k)-F (WR.
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1. Voltage Function Approximation

In the PI model, the M function is an interpolation of points

obtained from the spec. We can approximate it as a bivariate
polynomial.

2.6

2.4 -

Voltage (V)

o 40
-50 0 e " 20 Energy

50 ” Content (Wh ) 50
100 459 O (Wh)

100 150'~ 0 Content (Wh
Current (A) )

Current (A)

Linear approximation Cubic approximation e
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2. Energy Limit Functions

a1(I(k)) < b(k) < ag(I(k))

a, and a, are functions of the current (approximately linear)

|

Energy content (Wh)
NN
o

2
20 ="
—_—1a, linfit
—a, linfit
0 1 2 3 4
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3. Efficiency Functions

o I(k)R;.
AI(k),V(k) =1 — ———
ne(L(k),V(k)) a0

| o | I(K)R,,
nalI(k), V() = 1 = =
0.98 3 C"';C —
1C 52 C, 2C
y 0294 2 C/m
) 092+ 30/"*//
0.9 4C #
0.88 | | . 50/
14 16 18 2 22 24 26 28

We approximate the efficiency
functions using constants or
() lines.

Constant approximations look
bad, but that’s what people
have been doing! And not as
carefully as shown here!

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Voltage (V) 21
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Four models

V/E/n notation: Voltage, energy limit, and efficiency approximation
C: constant, L: linear, Q: quadratic (in terms of model variables)

Model Approximations
Voltage Energy Content Limits Efficiency
r
| Cor— s Pl 1 1,
C/CIC V= a o '
L ‘/nc)'rn.c & 2 0 a2 Ne
V, o o 0 1 (P) =+ ! Ktorn (& 7.
C/L/C i — J o, d - (.'11(‘ ) lL1( / :d,) + V1 n_d
I Wz.cnn..c « B > 0 Q-Q(P) — 'lI'Q(P/v‘rnorn,c) + v2 Tec
4 .
C/L/L e ‘/-710771-9‘1 P <l a‘l(P) = ul(P/‘/:tarn,d) iy 77d(P) =1- PRid/v’ffonz.d.
| 1 Voo =EFN az2(P) = u2(P/Vaom,e) tv2 1 (P)=1—PR;./V2, ...
: a1(l) =url +v1 nall, V) =1—-1R,[V
L/L/Q V =z x10l + xo1b '
Q Sl L S ot [T i iy ne(I,V)=1—IR;.)V

C/C/C 1s equivalent to the benchmark
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Four Models: Complexity

Consider an optimization problem where b and P are variables.

Complexity of each model w.r.t. the variables

C/C/C: Linear (hence its popularity)

C/L/C: Linear ¥

C/L/L: Quadratic (efficiency is a function of the power)
L/L/Q: Cubic (efficiency 1s a function of power and voltage)

O
©)
O
©)
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Evaluation

Metric: Energy

o Compute the mean absolute energy error (MAEE) when cycling
the battery at constant current

o Ground truth: PI model.

o Battery chemistries: Lithium Titanate and Lithium Ferrous
Phosphate.
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Evaluation
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Evaluation: Lithium-Titanate

Mean Absolute Energy Error (%)

C-rate
6—5 4 3 2 1 0 1 2 3 4 5
O C/C/C
O O C/L/C
5 X C/UL |-
¢ w/Q
4 - ] ]
O
i
3 O O |
- 8
2 ; *
O O -
o L Q
1 0
§ & % B ER
- g x N \ O \
-150 -100 -50 0 50 10 150
Current (A)

Models perform in order of the degree of their
complexity.
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Evaluation on Applications

o How do we convince people to adopt our models?
o Accuracy metrics aren’t always convincing. ..
o Lets see how model results differ for two applications
¢ Solar farm: participating in electricity market in the form of
constant hourly production
- Key variable: The amount of energy that the farm committed
to providing, but did not deliver (unmet load)
¢+ Regulation: ancillary service, focus on discharging
= Key variable: Maximum power that we can guarantee to

provide.
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Solar Farm

0.8 ] C/L/L and L/L/Q results
—¥— P| model . .
= IR R are almost 1dentical
7 067 —a—CILIC [T
g . —.—E/ILL/CL; _ Minimum # of cells to
& get 25% unmet load:
qg) 0.2+ - PI: 50
> = ~ - C/IC/IC: 77
Agog - C/L/C: 56
s‘vé | | | ' ' - C/L/L: 48
g i - L/L/Q: 49
§ 0 Ar oY
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Regulation

100

== Pl model This is the maximum
o & 2o | power that we could
T el A guarantee to provide for
g the length of the contract,
2 if the battery starts at 50%
20 capacity.
30
9: nf"‘"—'--a— a — e 4
E= All models perform
210t ! quite well, except for
3 t L - .
D oi ; o Iy o R C{C/C, hence the
winner 1s C/L/C
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What Did We Learn?

o Not trivial to calibrate even the benchmark
o C/L/C> C/C/C while remaining linear

o Understanding the approximations made in simpler models is
crucial.

What Is Next?

o Experiments are under-way to validate our models for different

Lithium-1on chemistries, as well as other battery technologies
Lead-Acid,

Redox-Flow
Sodium-Nickel-Chloride
o How to take into account temperature? state of health?
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What
next?

WATERLOO | ENGINEERING
EDUCATING THE ENGINEER OF THE FUTERE



