Battery Modeling: Trade-offs between Accuracy and Complexity

Dec. 2018

Presented by: Catherine Rosenberg

Canada Research Chair in the Future Internet Cisco Research Chair in 5G Systems

Smart Grid

Storage: A Hot Area

Global investment in energy storage technologies to reach \$122 Billion by 2021

Source: Pike Research

Battery Costs: Current and Projections

Tesla/Panasonic and GM/LG Chem battery costs were already (in 2016) down to the lowest projections for 2020!

Change: 2014

Why Storage?

Storage decouples supply and demand. Allows Reliability for large scale renewable integration Flexibility

for energy management

Applications

Battery Models

Electrochemical Models:

- Describes internal states of the battery by simulating chemical processes
- Useful for understanding and **designing** batteries
- Equivalent Circuit Models:
 - Resistance-capacitance components to model voltage non-linearities
 - Partial-differential equations
 - Typically useful for **"small" simulations of energy systems**

"Simplified Mathematical" Models:

- Black-box approach, model inputs and outputs
- Low-order polynomial functions
- Useful for large-scale simulation, optimization of energy systems

Tractable Models For Optimization

Accurate

• Required degree of accuracy depends on the application

Tractable and low computational complexity

• Explicitly described by polynomials. Linear is easiest to work with.

Calibrated using spec

• Battery specifications sheet is readily available, avoid experiment-based parameter derivation which is cumbersome and does not scale

Uses power as input

 Power is conserved, avoid having to explicitly model voltage/current transformations

Integrates BMS (battery management system) functionality

• Model the cells as well as the software that protects them from misuse.

Our approach

Start with a model that meets 4/5 requirements

- Accurate, spec-calibrated, power-based, integrated BMS, but is not explicit and based on polynomials
- Power-based Integrated (PI) model (F. Kazhamiaka, S. Keshav, C. Rosenberg, and K-H. Pettinger, "Simple Spec-Based Modelling of Lithium-Ion Batteries", <u>accepted</u> to IEEE Transactions on Energy Conversion, April 2018.)

Explore different ways to approximate the complex parts of the PI model

- Approximate using polynomials of degree 0 (constants) through 4 (quartics)
- Get a sense of what is lost with each approximation by comparing with the PI model

Our Contributions

- Derive explicit models from the PI model
- Explore the effects of model accuracy with respect to the battery application
- Calibrate and validate the benchmark used by almost everyone

Note: All of this work is validated with an extensive measurement campaign

- Two Lithium-ion technologies
- Two cells per technology
- Charge/discharge test profiles exploring full capabilities of each cell
- Test profile resembling realistic usage

Disclaimer

We do not model:

- State of health (degradation)
- Battery lifetime
- Temperature effects

A Storage Model Based on First Principle

The storage has some **capacity** *B* in Wh. At time *t*, it is charged with power P(t) > 0 or discharged with power P(t) < 0. Its content is b(t)

$$\begin{array}{c|c} P(t) > 0 \\ \hline b(t) \\ \hline \end{array} \begin{array}{c} P(t) < 0 \\ \hline \end{array}$$

The **ideal** behavior is:

$$0 \le b(t+\delta) = b(t) + P(t) \ \delta \le B$$

where δ is the time-slot duration

However, it is important to consider imperfections, such as:

- charging/discharging speed limits
- energy conversion/inversion efficiency
- capacity limits

Two Main Issues

- Calibrating these models, i.e., selecting the parameters out of the spec sheet.
- Validating them: is the benchmark good enough?

Technical Data			
Nominal Capacity	30 Ah (measured at C/10 discharge rate, RT)		
Nominal Voltage	2,3 V		
Voltage range	1,7 V to 2,7 V		
Impedance (1 kHz)	< 2 mOhm		
Dimensions Length (L) Width (W) Thickness (T)	287 mm ± 1 mm 178,5 mm ± 1 mm (153 mm main body) 12 mm +0,1/-0,5 mm		
Weight	1100 g		
Volume	475 ml		
Housing	Foil packaging		
Tabs Length Distance Wildth Thickness	Aluminium (+ Pole), N+coated Copper (- Pole) 33 mm ±1m 30 mm ±0.25 mm 50 mm ±0.5 mm 0.2 mm ±0.27 mm		
Expected lifetime	Up to 15,000 cycles (at 1C charge/discharge full DoD and RT)		
Expected calendar life	20 years (at RT)		
Charge			
Charging method	CC/CV (constant Voltage with limited current)		
Max. charge voltage	2,7 V (+0,05 V)		
Recommended charge current	30 A(1C)		
Max. charge current	120 A (4C)		
End of charge	U = 2,7 V and I < C/10		
Max. temperature range	-20°C to +55°C		
Discharge			
Recommended discharge current	30 A(1C)		
Max. discharge current	120 A (4C)		
End of discharge Voltage	1,7 V		
Max. temperature range	-20°C to +55°C		

The Function M(.)

V(k) = M(b(k), I(k))

M surface represents viable combinations of cell voltage, energy content, and applied current

> For P(k) > 0, we need to find the intersection between the surface defined by M(.) and the surface defined by: $b(k)=b(k-1)+P(k)-I^2(k)R_{ic}$

1. Voltage Function Approximation

In the PI model, the M function is an interpolation of points obtained from the spec. We can approximate it as a bivariate polynomial.

2. Energy Limit Functions

$a_1(I(k)) \le b(k) \le a_2(I(k))$

 a_1 and a_2 are functions of the current (approximately linear)

3. Efficiency Functions

$$\eta_{c}(I(k), V(k)) = 1 - \frac{I(k)R_{ic}}{V(k)} : I(k) \ge 0$$

$$\eta_{d}(I(k), V(k)) = 1 - \frac{I(k)R_{id}}{V(k)} : I(k) < 0$$

We approximate the efficiency functions using constants or lines.

Constant approximations look bad, but that's what people have been doing! And not as carefully as shown here!

Four models

 $V/E/\eta$ notation: Voltage, energy limit, and efficiency approximation C: constant, L: linear, Q: quadratic (in terms of model variables)

Model			Approximations	
		Voltage	Energy Content Limits	Efficiency
C/C/C	$V = \int$	$V_{nom,d}$: $P < 0$	$\bar{a_1}$	$ar{\eta_d}$
	v -)	$V_{nom,c}$: $P \ge 0$	$ar{a_2}$	$ar{\eta_c}$
C/L/C	$V = \int$	$V_{nom,d}$: $P < 0$	$a_1(P) = u_1(P/V_{nom,d}) + v_1$	$ar{\eta_d}$
	r - J	$V_{nom,c}$: $P \ge 0$	$a_2(P) = u_2(P/V_{nom,c}) + v_2$	$ar{\eta_c}$
C/L/L	$V = \int$	$V_{nom,d}$: $P < 0$	$a_1(P) = u_1(P/V_{nom,d}) + v_1$	$\eta_d(P) = 1 - PR_{id}/V_{nom,d}^2$
	v - {	$V_{nom,c}$: $P \ge 0$	$a_2(P) = u_2(P/V_{nom,c}) + v_2$	$\eta_c(P) = 1 - PR_{ic}/V_{nom,c}^2$
L/L/Q	V = a	$r_{00} + r_{10}I + r_{01}h$	$a_1(I) = u_1I + v_1$	$\eta_d(I,V) = 1 - IR_{id}/V$
	,		$a_2(I) = \boldsymbol{u_2}I + \boldsymbol{v_2}$	$\eta_c(I,V) = 1 - IR_{ic}/V$

WATERLOO | ENGINEERING EDUCATING THE ENGINEER OF THE FUTTHE

C/C/C is equivalent to the benchmark

Four Models: Complexity

Consider an optimization problem where b and P are variables.

Complexity of each model w.r.t. the variables

- C/C/C: Linear (hence its popularity)
- \circ C/L/C: Linear \bigstar
- C/L/L: Quadratic (efficiency is a function of the power)
- L/L/Q: Cubic (efficiency is a function of power and voltage)

Evaluation

Metric: Energy

- Compute the mean absolute energy error (MAEE) when cycling the battery at constant current
- Ground truth: PI model.
- Battery chemistries: Lithium Titanate and Lithium Ferrous Phosphate.

Evaluation

Evaluation: Lithium-Titanate

Models perform in order of the degree of their complexity.

Evaluation on Applications

- How do we convince people to adopt our models?
- Accuracy metrics aren't always convincing...
- Lets see how model results differ for two applications
 - Solar farm: participating in electricity market in the form of constant hourly production
 - Key variable: The amount of energy that the farm committed to providing, but did not deliver (unmet load)
 - **Regulation**: ancillary service, focus on discharging
 - Key variable: Maximum power that we can guarantee to provide.

Solar Farm

C/L/L and L/L/Q results are almost identical

Minimum # of cells to get 25% unmet load:

- PI: 50
- C/C/C: 77
- C/L/C: 56
- C/L/L: 48
- L/L/Q: 49

Regulation

This is the maximum power that we could guarantee to provide for the length of the contract, if the battery starts at 50% capacity.

All models perform quite well, except for C/C/C, hence the winner is C/L/C

What Did We Learn?

- Not trivial to calibrate even the benchmark
- \circ C/L/C > C/C/C while remaining linear
- Understanding the approximations made in simpler models is crucial.

What Is Next?

- Experiments are under-way to validate our models for different Lithium-ion chemistries, as well as other battery technologies
 - Lead-Acid,
 - Redox-Flow
 - Sodium-Nickel-Chloride
- How to take into account temperature? state of health?

What next?

