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Tremendous Changes in the Last Mile
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New Planning and Operation Paradigm

Distribution utilities have to

• Run power flow analysis → planning

• Control distributed energy resources (DER) → operation

• Detect, classify, and localize events shortly after their occurrence
→ operation

• Locate harmonic sources and estimate the distribution of harmonic
voltages → operation

The system identification, event detection, state estimation problems
that must be solved are usually ill-posed
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Sparsity Can Help...

• Distribution networks (radial or non-radial) have sparse topology

• High-precision sensors (D-PMUs and harmonic meters) are
relatively sparse compared with the number of nodes

• Events are sparse in time and frequency domains
◦ tap changes
◦ switching operations
◦ harmonics
◦ faults
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Learning a Sparse Model from Data

Distribution network topology is necessary for several analytics and
control applications, yet it is typically unknown

• Situational awareness

• Control applications (model-based)

• State estimation

• Cybersecurity

Goal
a) estimate the admittance matrix of a distribution network from
measurements of voltage and current magnitudes and phase angles
b) track changes in the identified model in near real-time
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Problem Formulation


I1(1 · · ·K )
I2(1 · · ·K )

...
IN(1 · · ·K )


︸ ︷︷ ︸

IKbus

=


Y11 Y12 . . . Y1N

Y>12 Y22 . . . Y2N
...

...
. . .

...
Y>1N Y>2N . . . YNN


︸ ︷︷ ︸

Ybus


V1(1 · · ·K )
V2(1 · · ·K )

...
VN(1 · · ·K )


︸ ︷︷ ︸

VK
bus

,

Each off-diagonal block of Ybus is a submatrix Ymn = −Z−1
mn

corresponding to the admittance of a multi-phase line, and each
diagonal block is a submatrix

Ynn =
∑

m∈{o|(o,n)∈E}

(
1

2
Y s
mn + Z−1

mn

)
.
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Problem Formulation

Estimate Ybus (or at least a large part of it) given VK
bus and IKbus for

time slots: 1 · · ·K

Key observations

• Ybus is symmetric and sparse

• Vbus is low rank

• measurements are noisy

• only a small number of nodes are monitored
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Base Case: Vbus is full rank, network is fully observed

Ŷbus = argmin
Y

∥∥∥YVK
bus − IKbus

∥∥∥
F

subject to Y ∈ SN×N .

Enforcing sparsity:

Ŷbus = argmin
Y

∥∥∥((VK
bus)
> ⊗ 1N)vec(Y )−vec(IKbus)

∥∥∥
2

subject to Y ∈ SN×N , ‖vec(Y )‖0 ≤ δ,

We can write vec(Y ) = QY f (Y ) where f (Y ) collects the lower
triangular elements of Y and QY is a unique binary matrix that
converts f (Y ) to vec(Y )

f (Ŷ )=argmin
x∈C(N2+N)/2×1

∥∥∥(VK
bus
>⊗ 1N

)
QY x−vec(IKbus)

∥∥∥2

2
+λ ‖x‖0,
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Lasso

We solve the relaxed problem

min
x∈C(N2+N)/2×1

∥∥∥∥∥∥∥
(
VK

bus
>⊗ 1N

)
QY︸ ︷︷ ︸

A

x−vec(IKbus)︸ ︷︷ ︸
b

∥∥∥∥∥∥∥
2

2

+λ ‖x‖1.

The lasso shrinks the elements of Ybus toward 0 as λ increases

Elements of Y do not have the same scales
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Adaptive Lasso

The adaptive lasso applies less shrinkage whenever the true unknown
variable is large

min
x∈C(N2+N)/2×1

‖Ax−b‖2
2+λ

∑
i

|xi |
|x̂i |γ

,

where γ is a positive parameter and x̂i is an initial estimator for xi ,
e.g., the ordinary least squares (OLS) estimator defined:

x̂ = (A>A)−1A>b.

IFIP Performance, ePerf Workshop ’18 Leveraging Sparsity in Distribution Grids 14



Low Rank Structure of Distribution Networks

Vbus is low rank in practice
Can we still recover some part of the admittance matrix?

[
I1

I2

]
=

[
Y1,1 Y1,2

Y>1,2 Y2,2

]
︸ ︷︷ ︸

Y

[
XV2

V2

]
=

[
Y1,1X + Y1,2

Y>1,2X + Y2,2

]
V2

−
(
X> ⊗ X>

)
vec(Y1,1) + vec(Y2,2) = vec(C ).

[
f (Ŷ1,1)

f (Ŷ2,2)

]
= arg min

x
λ
∑
i

wi |xi |+∥∥[−(X>⊗X>)QY11 , QY22

]
x − vec(C )

∥∥2

2
.
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Partial Observability

What if only a small number of nodes are equipped with sensors?

Depends on the degree of nodes that are not monitored and how they
are connected to the rest of the network (work in progress)
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Early Event Detection

Assumption

Only a small number of elements of Y would change simultaneously
(or in a short period of time)

min
∆Y∈S

∑
n∈N |Pn|×

∑
n∈N |Pn|

‖vec(∆Y )‖0

subject to I t→t+K
bus − Y 0

busV
t→t+K
bus = ∆YV t→t+K

bus

can be relaxed and converted to a weighted regularized `1-norm
optimization
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Background

The growing adoption of power electronic devices and large non-linear
loads has increased harmonic-related power quality problems

Figure: Harmonic currents.

source: https://electrical-engineering-portal.com/definition-of-harmonics-and-their-originIFIP Performance, ePerf Workshop ’18 Leveraging Sparsity in Distribution Grids 19

https://electrical-engineering-portal.com/definition-of-harmonics-and-their-origin


Harmonic State Estimation (HSE)

• Locate harmonic sources
• Estimate harmonic voltage distribution
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Problem formulation

HSE aims to estimate state variables (injected currents by harmonic
sources), x , from harmonic measurements, z , given the measurement
noise, ξ:

z(h) = Φ(h)x(h) + ξ,

z(h) =



VL(1)(h)
...

VL(κ1)(h)
IL(1)(h)

...
IL(κ2)(h)


,Φ(h) =



aL(1)1 · · · aL(1)N̄
...

. . .
...

aL(κ1)1 · · · aL(κ1)N̄

bL(1)1 · · · bL(1)N̄
...

. . .
...

bL(κ2)1 · · · bL(κ2)N̄


,

where Φ(h) is a known (or estimated) system matrix with
aL(i)j = [Y H(h)−1]L(i)W (j) and bL(i)j = [Y bf (h)Y H(h)−1]L(i)W (j)
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Problem formulation

Sparsity

The state variable is sparse when there is a small number of sources
producing harmonics simultaneously at each harmonic order:

||x(h)||0 ≤ s

`0 Problem

Taking sparsity of x(h) into account, the HSE problem can be
formulated as:

min ||x(h)||0
s.t. ||z(h)− Φ(h)x(h)||2 ≤ η
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It is a non-trivial problem!

An `1 minimization is solved as a convex relaxation of this problem

Challenges:

• limited measurements pose an under-determined equation

• strong correlation between columns of Φ(h) (high coherence)
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The Proposed Harmonic State Estimator

SBL-based State Estimator

x̂ (k) = arg min
x

1

2
||z̃ − Φ̃x ||22 + λ

2N̄∑
i=1

u
(k)
i |xi |, (1)

γ
(k)
i = x̂

(k)
i /u

(k)
i , (2)

u
(k+1)
i = [Φ̃>·i (λI + Φ̃Γ(k)Φ̃>)−1Φ̃·i ]

1
2 , (3)

re-weighting parameter, ui , promotes the sparsity of x
weight parameter, λ, trades off sparsity and estimation error.

SBL can effectively deal with high coherence of the system matrix!
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Observability analysis

Definition
A power system is s-observable if the state variables satisfying the
sparsity condition ||x ||0 ≤ s can be determined uniquely given
harmonic measurements z .

Lemma
Sufficient Condition: A power system is s-observable if
Spark(Φ) > 2s.
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Noise-Free Case
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Figure: Comparing LSR of Lasso and SBL for different harmonic order under
Ma. The LSR increased by 8.3% on average
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Noise-Free Case
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Summary

Takeaways

• The proposed SBL-based harmonic state estimator has superior
performance despite the strong correlation between columns of the
system matrix; this eliminates the need to check the restricted
isometry property (RIP) or coherence condition.

• The proposed state estimator outperforms the state-of-the-art in
terms of estimation and localization errors using limited
measurements.

Next steps

• We are studying the optimal placement of harmonic meters.

• We are using smart meter and PMU data to estimate the system
matrix in real-time.
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Questions?

Omid Ardakanian
email: ardakanian@ualberta.ca
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